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In 1934 Kantorovitch modified the Bernstein polynomials B, by means of
metrical means to yield a nonlinear polynomial process Bf which approximates
measurable functions almost everywhere. The present paper is concerned with the
pointwise comparison of B, and B} on C[0, 1] (the space of continuous functions
on [0,1]). We establish direct estimates of the form [|(B,f—f)x)| <
[(BXf — f)(x)]| + w(3n~ Y3, f) with the first modulus of continuity . On the other
hand, it is the main purpose of this paper to show that this inequality can not be
strengthened to |(B,f— f)(x)| < C (B, f— f)(x)| so that B} is not a pointwise
extension of B, on C[0,1]. To this end, a previous condensation principle is
applied concerning nonlinear functionals which assures the nonvalidity of this last
inequality for x on a dense, in fact, residual, set of [0,1]. ¢ 1987 Academic Press. Inc.

1. INTRODUCTION

For feC[0, 1], the space of continuous functions on [0, 1] (endowed
with the usual sup-norm | |c), it is well known that the Bernstein
polynomials (ne N := set of natural numbers)

n

= T S i pul)i= () 61—

converge uniformly to f, i.e.,

lim 1B,/ /]c=0.

Kantorovitch [11] modified these polynomials in the form that the point
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176 F. VAN WICKEREN

functionals f(k/n) are substituted by metrical means given via (R := set of
reals, £ < [0, 1] with Lebesgue measure meas £ > 0)

M(E, f):=supj{ueR :m(u; E, f) =4 meas E},

1.1
m(u; E, [):= meas{ve E: f(v)=u}. (-

Indeed, this yields pointwise convergence a.e. also for measurable functions
7 by the polynomials

Z M(Ekn’f)pkn’

k=0

k k ’
Ekn c= |:__(Sna _+5n:| N [0, l]s 5n= 3n""’3.
h n

BXf:

(1.2)

In this paper we consider the (pointwise) comparison of the two processes
B, and B} on C{0, 1], in particular the problem whether B} is indeed an
extension of B,. Thereby it should be noted that B} is not linear, even not
sublinear, so that comparison theorems for (sub-) linear operators do not
apply here.

In Section 2 we first establish direct estimates of the form

(BY = NS UB, [ =) +w(d,, f),
(B, f = N <UBYS =/ Wx) + (6, f)

where w is the first modulus of continuity (cf. (2.9)). On the other hand, it
is shown in Section 3 that (1.3) can not be strengthened to

UByf=INNSCo (B f = U< CENBYS =X)L (1.4)

for some constants C, ,, C¥,, independent of ne N. This will be achieved
by a quantitative condensation principle (cf. Theorem 3.2) developed in
[13;14]; it delivers a counterexample f,e C[0,1] such that both
inequalities of (1.4) are false even for x of a dense, indeed residual set of
[0, 1]. Moreover, this condensation principle simultaneously yields the
sharpness of (cf. Theorem 2.2)

{BYS = F)x)| < 3w(d,, f)

for the same counterexample f, and for x on the same dense set.

Besides these results let us mention that the techniques used in Section 3
show how one may obtain condensation of singularities in a concrete (but
nonlinear) situation by using resonance and condensation principles
developed in a general frame work (see [3-8; 13; 14] and the literature
cited there, also for further applications).

(1.3)
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2. DIRECT COMPARISON THEOREMS

Let us first establish some elementary properties of the (nonsublinear)
functional M(E, /).

LemMma 2.1. Let feC[0,1] and Ec [0, 1] with meas E> 0.
(a) MI(E, [) is uniquely determined by

m(M(E, f ); E, f ) > } meas E, 2.1)
m(M(E, f)+ & E, f)<imeasE  (¢>0) (2.2)
so that for ue R
m(u; E, ) < Lmeas E= M(E, ) <u, (2.3)
m(u; E, f)> 1 meas E= M(E, ) >u. (2.4)

(b) For b=0, ce R one has

M(E, ¢)=c, (2.5)
M(E, f+c)=M(E, ) +c, (2.6)
M(E, bf )=bM(E, ), (2.7)

| f(v)—gv)|<b  forallve E= |M(E, f)— M(E, g)|<b. (2.8)

Proof. Obviously, u,:= M(E, ) is well defined since f is bounded.
Now m(u; E, ) is decreasing and continuous in « (cf. [1, p.23]) so that
there exists u, > u,— 1/n such that

ymeas E<m(u,; E, f)<m(ug—1/n; E, [} > m(ug; E, [).

Hence the supremum in (1.1) is attained at u, so that one has (2.1), (2.2),
and thus (2.3), (2.4), respectively, as well as the uniqueness. Moreover,
(2.5) is obvious whereas (2.6) follows by substituting x =« — ¢ so that

M(E, f+c¢)=sup{x+c:m(x;E, f)=imeas E} = M(E, )+ c.

Analogously, one has (2.7) with x=u/b (b>0). If f(r)<g(v) for veE,
then by (2.1)

ymeas E<m(M(E, f); E, /) <m(M(E, f ); E, g)
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so that M(E, f)< M(E, g) by (2.4). Hence, (2.8) is a consequence of (2.6)
and

flo)—b<g)<fv)+bh  (veE) |

Obviously, B¥ is uniformly bounded on C[0, 1] in view of (2.8) (take
g=0, b= f| <) But this implies the continuity of B/ only at /=0 since
B¥ is non-subadditive. However, the following theorem establishes
continuity on the whole space, in fact in terms of the first modulus of
continuity

w(t, )= sup{| f(x)— fx+h)| :x, x +he[0,1], [A <t} (29)

THEOREM 2.2. For neN the operator BYf — f is continuous on C[0, 1],
in fact ( f,ge C[0, 17, ¢f. (1.2))

HBYf—f)—(BFg—g)lc<3w(d,, f—g). (2.10)
In particular, one has the direct approximation estimate
1BYf =S lle<3w0(d,, f) (2.11)

Proof. Let us first note that (cf. [2, p. 26])

i Pinlx) =1, (2.12)

Y Pulx)<6,/108. (2.13)

lk/n — x] > 8,
For xe [0, 1] one has in view of (2.8) for 0<k <n, ve E,,,
lo—x| <lv—k/n|+ |k/n—x| <d,+ |k/n— x|,
I(f(v) = f(x))— (g(v) — gx) < @(, + |k/n— x|, [ —g),
M(Ey,, f— f(x)) ~ M(E,,, g — g(x))| <w(d, + |k/n— x|, f —g).
Therefore (2.10) follows by (2.6), (2.12), (2.13),
[(BY f—f)x)—(BYg—g)x)l
< X pol) IM(Esy, () = M(Eey 8~ 5
< Y P¥ o2, f-g)+ Y Pux)o(l, f—g)

lke/n — x| < 8, |k/n — x| > 8y

<@(20,, f —g)+(5,/108) (1, f — g) <3w(4,, f —g),
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the latter inequality being a consequence of (cf. [12, p. 99])
w(s, f)/s<2o(t, f)/t O<t<s).
Thus B*f— f is continuous, and (2.11) follows by setting g=0 (cf.

(25) 1

To compare B,, B} (in pointwise sense) one may proceed analogously to
deduce

THEOREM 2.3. Let neN, xe[0,1], and fe C[0,1]. Then (1.3) holds
true.

Proof. Since |f(v)—flk/m)<w(d,,f) for 0<k<n, vekE,, one
obtains in view of (2.6), (2.8),

|M(E,.. f)— flk/n)| <w(5,, f)

so that (1.3) follows, noting that by (2.12)

n

(B f =B, /N < Y [M(Epy, f)— fk/n)| pro(x) < 00(3,, /). |

k=0

Of course, (1.3) does not deliver direct comparison estimates of B, and
B¥ on account of the additional term w(d,, f ). However, in the following
section it will be shown that these inequalities cannot be strengthened to
the form (1.4).

3. CONDENSATION OF SINGULARITIES WITH RATES

Let w be a positive function on (0, o) such that (0 <s< 1)

(i) ofs)<olt) (i) lim w(1)=0, (3.1)
(i) s/ols)<tol), ) lm P/w()=0 (3.2)

(e.g., o(r)=1* 0 <a<i). Moreover, let A, ={A4,}, AX={A}} be positive
sequences tending to infinity such that

lim A,/n"2w(1/n)=0, (3.3)
lim A*/n'Pw(1/n)=0 (3.4)

640/50,2-7
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(eg, A,=n"w(1/n))f, A*=(n""w(1/n))", 0<p, y<1). The following
theorem establishes the sharpness of (2.11) (cf. (3.5), (3.6)) as well as the
nonvalidity of (1.4) (cf. (3.7), (3.8)), pointwise on a residual set in [0, 1].
Recall that A is a residual set in [0, 1] if it is the complement of a set of
first (Baire) category. Then A is dense and of second (Baire) category by
Baire’s theorem.

w

there exists a function f,,e C[0, 1] and a residual set A, < [0, 1] such that
for each xe A,

THEOREM 3.1. For any w, A, AX subject to (3.1)-(3.4), respectively,

wlt, f,,) <4w(t)  (1>0), (3.5)
lim sup [(B7 /., — f,)(x)/(d,) 2 1, (3.6)

B — L) 1
lim sup o ) 4, (3-7)

B L)) 1
lim Sup B 7 )] A7

A\

1. (3.8)

The proof of this theorem is based on the following condensation prin-
ciple with rates developed in [13;14] by means of Baire category
arguments (here it is quoted for the particular Banach space C[0, 1]): let I
be a countable index set, let A;, i€ I, be dense, countable subsets of [0, 1],
and set

Lipl:= {feC[0,1]:a(t, f)=0Oft), t >0+ }.

For iel consider sequences {T,}, {V,} of continuous operators on
C[0, 1] into itself (not necessarily sublinear).

THEOREM 3.2. Let h,;eLip 1 be given such that for each iel, xe A,,
felipl M>0,0<¢; <00, 0<b, <0, 0<@,;=cd{1) for n > w0}

sup ||a,llc =: N;< o0, (3.9)
w(t, h,) <M min{l, t/p,,}  (neN,1>0), (3.10)
lim sup LT (@) b+ ) fo(@ ) 2 ¢, (3.11)
lim sup | [V, (@(@,) hy+ ) fox(@,,) < b, (3.12)

" — oG
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Then there exists f, e C[0, 1] and a residual set A, < [0, 1] such that for
each xe A,

olt, f,)<Mo(t)  (1>0), (3.13)
~ | Ti f %) ¢
hf.nj;p max{b,w(@,), |V.fo(x)} 251; (3.14)

Proof of Theorem 3.1. Consider the dense countable index sets
(I=1{1,2,3})

A;=1{6p/qe(0,1):p,qeN},  A,={p/2?€(0,1):p,qe N},
Ay={(p+1/4)/57€(0,1): p, ge N},
and the continuous operators (cf. Theorem 2.2)
Tmf=B,’ff—f, Vaf=0,
Tof=B5f—f  Vif=An(Bxf—f),
Tf=Bsif—f  Viaf=A%BLS—f).

To construct the elements #,; consider the 1-periodic function H given by
H(v)=41v|, |v] €4, so that H is continuous with 0 < H(v)<2. Then one
has for 0<u <1, ae R by substituting z=v—a—1}

m(u; [a,a+ 1], H(v)y=m(u: [ -4, 3], Hz))=1—u/2. (3.15)

Moreover, for ae(g—1, ¢], ge N, it follows that
m(uy [_as a]5 H) = 2m(u’ [0, a]’ H)

2% s [p—1, p), H)+ 2m(u; [g— 1, a, H)
<2(‘:]:vI D(t—u/2)+2<2a(l —uf2)+2
or
=22(q— 1)1 —u/2)=2a(l —u/2)—2. (3.16)
Next we will show that (x & (0, 1), #— o0),

[BXH(nv)](x)=1+C(n""?), (3.17)

[BX*H(v/26,)](x)=1+ O(n"'?). (3.18)



182 E. VAN WICKEREN

To this end, let ne N be such that 290, < x < 1 --24,. Consider first those &
with 8, <k/n<1-—0,. Then one obtains with z=nv —k and (3.16)

2
m <1 +§(—1)’n 2B E H(nv)>

1 2 ) , <0,,r=0
_ L2 (— 1y n 237 3023 0?31 H(z ns s
nm< 3( Vo L= 3nT n, H )>{>5n,r——l,

which implies by (2.3), (2.4),
1—3n" P < M(E,,, H(nv)) <1+ 3n"22

For the other £ one has |k/n— x| >4, so that in view of (2.12), (2.13),

[B:H(nvu(x):lw(n“>+“’< )3 pk,z(x>)=1+co(n 1),

|kin x| =d,
Similarly one obtains (3.18) since with z=v/2J, and (3.15)

m(u; Ey,, H(0/26,)) = 28, m(u; [kfon®” — 1, kjon®* + 11, H(z))
=(1 —u/2) meas E,,,,
M(E,,, H(v/26,))=1  (6,<k/n<1-9,)
Now set 4, (v)= H(v/¢,;) with
Dy :25n’ (pn2=27ns (pn3:5 "
so that (3.9) follows with N,=2 and (3.10) with M =4. To verify (3.11),
(3.12), b;=c,=1 (the situation for V,, is trivial) consider first the (linear)

Bernstein polynomials. Let x = p/2¢9e A; and n>¢q. Then

hpo(x)=H(p2" ) =0, (3.19)

in particular, #,,(k/2")=0 so that (V,,h,,){x)=0. In view of (cf. [2,
p.27])

(B, f—f)x) <on "7 f)=0(n""?)  (felipl) (3.20)
and (3.3) this yields (3.12) since

LV a(@(@2) Aoz + )] /0(@,2) S UV 2 S0 [0(0,2) = o(1).
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On the other hand, for x=(p+1/4)/57€ A, one has (n=>q+1)

et i

xX/Qs=pS" "+ Y S4-=:K,+-,

PR 3
hya(x)=H(K,+3)=H(;)=1 (3.21)

so that |(T 3 4,5)(x)| =1, since h,;(k/5")= H(k)=0. Thus (3.11) follows by
(3.2)(ii), (3.20), since
LT s(@(@n3) Bz + ) (%) /(@,3)
2 [(T,3h,3)(X)| + 05~ /(57") =1+ o(1).
Concerning the metrical means, note first that in view of (2.7), (2.10),
(3.2)(i1), (3.4)
LT (@) b+ )10 fo(9,,)
S {l(Tn]hnl)(x)I +0(0,/w(26,)) = (T hy }(x)| + (1)
T (T k) ()| + 027027y = (T b ) (X)) + (1),
[LV ns(@(@,3) s + ) (x)] [x(@,13)
SV s haa )X + O(AES5 P o(577)) = [(V s b)) (X)) + 2(1).

Then for x=6p/qe A, and for the subsequence n_,-=23jq3

(3.18) that

it follows by

h,1(x)=H(6pq2’[pq) =0, (T, h,)(x)=1+0(1).
Moreover, by (3.1)(ii), (3.4), (3.17), (3.19), (3.21),

(Thrhp)(x)=1+0(1) (xe4,),
[(Vasha)x) = 0(4%5 ")=06(1)  (xeds)

so that the metrical means also fulfill (3.11), (3.12). Thus (3.13), (3.14)
yield the assertions. |

Note that (3.7), (3.8) are valid simultaneously for the same x and f,,
because the limites superiores may be realized by different subsequences of
N, depending on x.

Finally, let us mention that uniform boundedness and condensation
principles (but without rates) were developed in [9; 10] for nonlinear
operators, too. This led to the definition of asymptotically subadditive
operators in [9; 10] whereby the metrical means were one of the typical
examples. However, an application was not given there since the operators
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B} are uniformly bounded on C[0, 1]. But, as it is shown here, the con-
densation principle Theorem 3.2 can be applied to this process for the
Lipschitz class (3.5).
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